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Questionnaire measures are central to many areas of study
within the psychological sciences. However, they often place
a heavy burden on participants; questionnaires are frequently
lengthy and unengaging, and with participants often required
to complete multiple measures within a single study, this
results in lower data quality, increased cost and a poor
participant experience. Here, we introduce a straightforward
method for creating short versions of existing measures that
are able to accurately determine participants’ sum scores,
subscale scores or factor scores. Our method, referred to
as Factor Score Item Reduction with Lasso Estimator, uses
Lasso-regularized regression to select items and weight them
such that true scores can be predicted accurately from a
reduced item set. We demonstrate the performance of this
method on an example dataset, and provide code and
guidance for implementing the approach.

1. Introduction

Self-report questionnaire measures are central to much of
psychological research, providing a practical means of assessing
psychological constructs and capturing individual differences.
Such measures are typically validated extensively, ensuring that
they provide robust, valid and reliable measures of a particular
construct.

However, self-report measures can often be lengthy and
repetitive, with large numbers of items addressing similar
constructs, and become time-consuming and monotonous as
a result. This places a significant attentional burden on partici-
pants and can lead to disengagement and poor-quality respon-
ses [1,2]. Furthermore, participants often find lengthy studies to
be off-putting when considering participation in research [3,4].
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Finally, time-consuming measures inevitably result in longer participation times and hence greater n
spending on participant payments, limiting available funding and restricting sample sizes.

Prior efforts to reduce the burden of self-report measures by constructing short scales have taken a
variety of approaches [5]. Perhaps the most effective and commonly used approach uses item response
theory [6,7], in which models are constructed that describe the relationship between an individual’s
response to a given item and their score on the underlying construct. These models can be used to
select items whose responses are most discriminative in relation to the underlying construct being
measured, resulting in short measures that accurately measure the construct of interest [8-11].

While this approach can be effective, it does possess certain limitations. Item response theory
requires proper specification of the item characteristic curve model, for which there is not necessa-
rily an optimal approach [12]. Parameters of these models must also be estimated accurately, which
presents additional challenges [13], and it is important to ensure that model fit is acceptable before
drawing inferences regarding the value of individual items [14]. More significantly, these models
typically assume that the measure is unidimensional, having only a single underlying dimension [6].
Violations of this assumption can invalidate model parameters [15], rendering the approach infeasible
for measures that assess multiple latent constructs. This is an important limitation, as many measures
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are multidimensional, as is often demonstrated through factor analytic approaches revealing multiple
underlying latent dimensions. This is often the case in scales designed to measure symptoms of mental
health problems, which will frequently assess multiple sub-dimensions of a more general symptom. In
sum, while effective, item response theory approaches are complex and require expertise, while also
being limited to unidimensional measures.
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The need for shorter scales is not limited to the case of individual measures targeting a specific
latent construct. Increasingly, researchers are looking to factor analysis to identify broader latent
dimensions captured by existing measures of related constructs. For example, in mental health
research, we may wish to identify transdiagnostic symptom dimensions that can be captured by
combining multiple measures of specific symptoms and performing factor analysis [16,17]. Given the
burden placed on participants by completing multiple scales, resulting in hundreds of items, this is
another area where it is desirable to derive a shorter scale that can nonetheless capture these latent
dimensions. We have previously used an earlier variant of the approach presented here in this context
successfully [18,19].

Here, we introduce a simple, data-driven approach for reducing the length of self-report question-
naire measures which is straightforward to use, does not require fitting of complex models, and can
be applied to multidimensional measures (i.e. scales measuring multiple latent constructs, potentially
with established subscales, or combinations of existing scales). This approach, which we refer to as
factor score item reduction with Lasso estimation (FACSIMILE), derives a linear weighted combination
of items that accurately predicts scores derived from the full-length measure, providing a straightfor-
ward way to derive brief item sets automatically.

2. Material and methods
2.1. The FACSIMILE method

Here, we introduce the principle behind the FACSIMILE method. We assume that observed scores (y)
derived from a questionnaire measure (these may be total sum scores, subscale sum scores or factor
scores derived from factor analysis) can be approximated (y) subject to some degree of error () as a
linear weighted sum of individual item scores (x1, X3, X3, ...):

Y=Wp XX +Wy X Xp+ W3 X X3+ -+ +6, 2.1
1

where w, represents the weight of item x,,. With the full item set, this is a straightforward and perfectly
accurate prediction (i.e. the error term ¢ is zero); if predicting sum scores, all weights w, are 1, while
if using factor scores, the weights correspond to the weights derived from factor analysis. However,
when we remove items, this becomes an imperfect prediction due to the loss of necessary items, hence
the inclusion of the error term ¢.

This represents a standard linear regression model, and we can therefore apply existing techniques
to identify which predictors (in this case, which items x,) are most predictive of our target variable (in
this case, the observed sum score y). Given that our aim is to drop items that are less informative of



the observed sum score, we turn to the Lasso (also referred to as L1) estimator, which in effect removes
uninformative predictors by setting their weight (w,) to zero. The remaining items are reweighted
to ensure that an accurate prediction is maintained. We can estimate these weights using standard
optimization procedures as implemented in commonly used software packages (e.g. scikit-learn for
Python).

This provides a subset of items that can be used to accurately predict the observed scores when
weighted appropriately. For example,

Y=wyxx1+0xXxp+wyxXx3+... +¢€. (2.2)

Here, the weight of item [2] has been set to zero, meaning it has effectively been dropped from
the measure. The weights of the remaining items (w; and ws) will have changed to ensure that the
observed score is still predicted accurately.

A helpful feature of the Lasso approach is that it provides a hyperparameter () that can be used
to determine how selective the algorithm is in setting item weights to zero: values close to zero will
include more items, whereas higher values will be more selective. Thus, we can adjust this parameter
to determine the number of included items, and accordingly how brief a revised measure will be. This
will, in turn, affect the accuracy of the measure, since removing items will unavoidably impact upon
the accuracy of predictions.

Importantly, there is not necessarily a correct or optimal value of «; some applications may accept a
very brief measure at the expense of accuracy, whereas others may prefer a slightly shortened measure
that retains high accuracy. As such, we cannot recommend any particular value of the parameter, but
this should instead be chosen based on (i) the original number of items in the measure, since the value
of a will depend on how many items are present initially and (ii) how short a scale the researcher
wishes to create. Typically, it may be simplest to evaluate candidate values of « through trial-and-error,
but the ideal method for finding the best value of « is through a relatively exhausting grid search
procedure (described in the following section).

This represents a simple problem in the case of a unidimensional measure, where Lasso-regularized
regression can be directly applied to select a subset of items. However, this becomes more complex
for multidimensional measures (e.g. scales with multiple subscales, or when estimating latent multiple
latent factors). In testing, we found that the best performance is typically not achieved with a consistent
value of a across dimensions; rather, each dimension (i.e. a factor or questionnaire subscale) is typically
best predicted by a model with a different value of a. As a result, we are not able to use a typical
multi-task Lasso regression model [20,21] that assumes a single value of « for each dimension. Instead,
we work around this limitation by using a two-step procedure. First, we select items for each dimen-
sion independently using the Lasso estimator described above, providing a set of included items with
relevance for each dimension. This enables the procedure to be more or less restrictive in its inclusion
threshold depending on the requirements of each dimension; if a given dimension is straightforwardly
estimated based on a few included items, then a high a value will suffice, whereas more challenging
dimensions to predict will require lower values, and hence more items included.

Second, we restrict our dataset to those items included in any one of these models (i.e. items
retained when predicting at least one of the dimensions) and fit individual unregularized regression
models predicting each of the target dimensions from the included items. This ensures that we utilize
information present in all of the included items for predicting every dimension, even if the initial
variable selection step did not suggest the inclusion of a given item for a particular dimension. For
example, if one dimension requires a larger number of items to be included, we ensure that we also
use these for enhancing the predictions of other dimensions, even if they provide relatively little added
value. As mentioned previously, this second step is redundant for unidimensional measures. These
two steps are integrated into a single function in the provided Python package, and therefore do not
necessarily need to be implemented directly.

2.2. Evaluation

The accuracy of predicted scores can be determined according to any established metric for continuous
predictions; we use R? as it provides a simple and intuitive measure of accuracy. As with any predic-
tion task, it is important to evaluate performance on a dataset that is independent of that on which the
model was trained. As such, we divide our data into three subsets: training, validation and testing. The
training set is used for training the model (i.e. deriving the weights on each item); the validation set
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is used for evaluating the performance of the model according to the value of hyperparameter «; the
testing set is used for evaluating the performance of the final model.

In practice, the simplest method for identifying the best model is to use a procedure that tests
various values of a within a given range, providing an indication of how performance (and the number
of items included) vary according to the value of this parameter. The results of this procedure can then
provide candidate short versions of the initial measure with varying lengths and predictive accuracy.
We use a randomized search procedure [22], drawing possible values of « from a beta distribution
Beta(1, 3), as this over-samples lower values of «a that are more likely to be effective in reducing the
number of items. The value of « is dependent upon the number of items in the original measure, and
so this distribution can be adapted accordingly to ensure that the values used are appropriate. The
number of iterations required will depend on the complexity of the question, and is most dependent
upon the number of target variables being estimated (e.g. the number of subscales). For the examples
reported here, we use 1000 iterations.

As mentioned above, there is no correct value of the a parameter. Nevertheless, we can attempt to
find a value of « that provides a generally acceptable balance between brevity and accuracy, and we
include this in the associated software package. We define this as:
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This provides an approximate metric representing a balance between brevity and accuracy based
on the minimum R? achieved across dimensions (e.g. different subscales) of the target variable. By
including a term that depends upon the number of items included (1 - “44d) we penalize models that
include a greater proportion of the original items, such that we prefer models that are accurate (based
on RZ) but which include fewer items. By taking the minimum R? across multiple dimensions, we
ensure that the resulting solution predicts scores accurately across dimensions; while we could use the
mean or median, this could result in a model that appears successful but is not consistently accurate
across dimensions. In general, however, the model selected will be dependent on situation-specific
requirements. As such, while we provide this metric for utility, we focus in our examples on the variety
of potential solutions rather than a single ‘correct’ solution.

We further sought to provide an indication of how dependent this procedure is on sample size,
since in general, models trained with larger samples will make more accurate predictions. To achieve
this, we repeated our analysis with different sample sizes (n = 50, 100, 200, 300, 400, 500). For each,
we generated 1000 subsamples with replacement from our data, providing an indication of both how
sample size affects accuracy and how variable this is across varying datasets. In each subsample, we
tested models with every possible number of retained items and calculated the R* for each.
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2.3. Pipeline overview

These steps can be assembled to produce a straightforward pipeline for estimating scores, which we
summarize here for clarity:

(1) For each dimension in the data, fit a Lasso-regularized regression model predicting scores on this
dimension from individual items. This should be performed in the training dataset.

(2) Take the items that are present in at least one of these models (i.e. combine all the items with
a non-zero coefficient across the models for each dimension). Fit new unregularized regression
models predicting the value of each dimension from only these items. This should be performed
in the training dataset. This step is not required if there is only a single dimension to be
predicted.

(3) Evaluate the predictive accuracy of these models on a validation dataset (e.g. using R?). Predic-
tions are made by participants’ responses to the included items by their weights in the model.

(4) Repeat this procedure for a number of iterations, using a different set of regularization parameter
values a in each iteration. The number of iterations will depend upon the complexity of the
problem; more complex problems (e.g. with more dimensions) will require more iterations.

(5) Select the model that performs best according to the desired criteria (e.g. balancing number of
included items against predictive accuracy).

(6) Evaluate the performance of this chosen model in the test dataset.

Together, this provides a straightforward procedure for reducing the number of items in a given
measure, ensuring that it retains the ability to accurately predict scores.



2.4. Implementation

We have developed a Python package which implements the FACSIMILE method, which is available
online (https://github.com/the-wise-lab/FACSIMILE). This is designed to be straightforward and usable
with little need for additional configuration and implements the optimization procedures described
above. Documentation and examples are provided within the above repository.

Once a model is trained and selected, weights for the individual items can also be extracted easily
to be used outside of this package. For example, it may be desirable to create a simple spreadsheet that
can calculate predicted scores without the need for any knowledge of coding by simply multiplying
the weights by the entered item scores.

2.5. Example data

Here, we demonstrate the FACSIMILE approach using an example dataset containing responses to
a commonly used trait anxiety questionnaire with an established two-factor structure, the state trait
inventory of cognitive and somatic anxiety trait version (STICSA). This dataset includes responses
from 1622 participants who completed the STICSA across multiple studies. We split this dataset into a
training set of 972 participants, a validation set of 325 participants and a test set of 325 participants.

2.6. Exploratory factor analysis

To demonstrate the ability of FACSIMILE to accurately estimate factor scores derived from exploratory
factor analysis, we use the procedure to derive a two-factor solution for the STICSA, following the
original description of the measure. We run this analysis in Python using the FactorAnalyzer pack-
age (https://github.com/EducationalTestingService/factor_analyzer). We perform this using maximum
likelihood estimation and an oblimin rotation and determine the number of factors according to the
scree plot.

3. Results

We demonstrate the effectiveness of our approach using an example dataset of responses to the
STICSA, a trait anxiety measure with a two-factor structure [23].

3.1. Predicting sum scores

We first use the FACSIMILE method to predict sum scores on the measure (i.e. summing the responses
to every item in the scale). We run 1000 iterations of the procedure with different alpha values drawn
from a beta distribution with a scaling factor of 8 (i.e. values from the distribution are multiplied by
8). The results of this procedure are shown in figure 1, which demonstrates how predictive accuracy
increases as a function of the number of items included. Note that here the steps in item inclusions
are relatively coarse-grained, being a short measure (22 items). Further, the optimization procedure
is somewhat redundant as we are not predicting multiple dimensions; multiple iterations of the
procedure with similar « values will inevitably lead to the same number of included items with the
same predictive accuracy.

The results show that this procedure is effective in reducing the number of items required to
adequately estimate sum scores on the measure. Even with fewer than 10 items, sum scores can be
estimated with R? scores of over 0.9, indicating high accuracy. As described in the methods, there is
no ‘optimal’ number of items, and this provides a variety of options depending on the extent to which
a researcher wishes to shorten the measure. To provide an indication of the sample size required to
train such a model, we repeated this procedure using varying sample sizes. This demonstrated that
performance began to plateau at a relatively small sample size of around 100 (figure 1c). However,
performance was in general still very high even with smaller samples; even with the smallest sample
size used (50 participants), accuracy was only marginally lower than with far larger sample sizes.
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Figure 1. Item reduction using FACSIMILE for sum scores. (a) Relationship between the number of included items and accuracy in
predicting observed sum scores, as quantified by the R” score. The solid line represents a cubic fit to the results. Note that there is
only one point per number of items, as with a single dimension only a single combination of items will be identified for each level of
reqularization. (b) Scatter plots showing observed versus predicted sum scores for each participant in the test dataset. The left figure
shows the results using a variant with only three items included, while the right figure shows a variant with 12 items included. The
dashed line represents perfect prediction (observed = predicted), while the solid line represents a linear fit to the results. (c) Analysis
of sensitivity to training sample size. The solid lines represent the mean R? achieved for a model of the corresponding sample size and
number of retained items, while the shaded area represents the 95% confidence interval around this value.

3.2. Predicting subscale scores

We can extend the method to predict scores on subscales. The STICSA has two subscales for cognitive
and somatic anxiety [23], and so we train models to predict these subscales based on a subset of
the measure’s items. This follows the same procedure as above, but we evaluate different a values
for the different subscales. This results in a single final set of items that can be used to predict both
dimensions.

As shown in figure 2, the cognitive subscale is predicted more accurately with lower item numbers
than the somatic subscale. Thus, a substantially shortened measure (below around 10 items) will be
able to predict scores on one subscale with satisfactory accuracy, but will perform poorly in predicting
the other subscale. Nonetheless, we can derive a shortened scale with R? scores of over 0.9 for both
subscales with as few as 10 items, representing over a 50% reduction in scale length. This procedure
provides multiple candidate models for a given number of included items, as shown in figure 2a,
where we often see a range of R* scores for the same number of included items. This results from
having different combinations of items for each dimension, based on the «a values to determine the
strength of regularization. For example, we may have two 10 item solutions, one with 9 items from the
Cognitive subscale and one with 9 items from the Somatic subscale; both of these solutions would have
the same number of items but may differ substantially in their performance.
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Figure 2. Item reduction using FACSIMILE for subscale scores. (a) Relationship between the number of included items and accuracy in
predicting observed subscale scores, as quantified by the R’ score. Here, the number of items refers to the final number of items that
are used for predicting both subscales. Note that performance for a given number of items varies depending on the particular model,
as different models may include different combinations of items (shown by the different dots for a given number of items) depending
on the combination of o values used. (b) Scatter plots showing observed versus predicted sum scores for each participant in the test
dataset. The top row shows the results using a variant with four items included, with the cognitive subscale on the left and the somatic
subscale on the right. The bottom row shows a variant with 12 items included, again with the cognitive and somatic subscales on the
left and right, respectively. Again, predictions are derived from a final model and item set that is used to predict both dimensions.
Note that predictive accuracy may differ from (a) to (b) since these are derived from different datasets: the validation and test dataset,
respectively.

3.3. Predicting factor scores

The FACSIMILE method can also be applied to factors derived from exploratory factor analysis to
predict individual participants’ factor scores from a reduced set of items. To demonstrate this, we
perform exploratory factor analysis on the STICSA, which has an established two-factor structure
[23].

As shown in figure 3, the scree plot indicates that a 2-factor solution best describes the data.
Examining the item loadings, we can observe that the two factors replicate those identified in the
original article, capturing cognitive and somatic dimensions. We note that this approach could also be
applied to solutions from confirmatory factor analysis based on established factor structures derived in
prior research, rather than re-deriving a known factor structure using exploratory factor analysis.

We next apply the FACSIMILE procedure to generate a reduced set of items that can accurately
predict participants’ scores on the two factors. In practice, this follows the same procedure as the above
analysis predicting subscales, the only difference being that we are calculating factor scores derived
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Figure 3. Results of the exploratory factor analysis performed on the STICSA data. (a) The scree plot, demonstrating evidence for
the two-factor solution. (b) The factor loadings for each item in the measure. Factors 1 and 2 putatively correspond to cognitive and
somatic factors. The item numbers are colour-coded according to their belonging to the cognitive and somatic factors in the original
article, and correspondence hetween our solution and the original factor analysis can be observed based on the correspondence
between these colours and the colour of the maximal loading for each item (i.e. blue items should have high loadings on the blue
factor).

from exploratory factor analysis rather than sum scores on the subscales identified through factor
analysis (i.e. summing responses to the items that most strongly load on to each factor). As before, it is
possible to accurately estimate participants’ factor scores using a subset of items that is approximately
50% shorter than the full measure figure 4.

4. Discussion

Here, we introduce the FACSIMILE method for creating short scales. This method takes a data-driven
approach, selecting a subset of items that can be combined using linear weighting to accurately
estimate sum scores, subscale scores or factor scores based on a reduced set of items. The method is
accurate, straightforward to use, and is not subject to some of the limitations of existing methods for
the creation of short scales.

Our method builds on existing approaches for the creation of short scales, such as those using item
response theory [12]. Our method diverges from these approaches by using a data-driven approach
based on predictive accuracy, rather than seeking to build a model of the relationship between
responses to individual items and values of an underlying latent construct. We also introduce the use
of linearly weighted item combinations through regression to enable more accurate predictions than
using a simple sum of item responses. This method provides a straightforward approach for creating
short scales that can both reduce participant burden and make data collection more economical. To
further ease its use, we have developed a Python package that enables users to apply the method
without the need to specify machine learning models directly.

Notably, we observed that reasonable accuracy (R* of 0.8 or higher) in our example dataset could be
achieved with as few as three items. In settings where perfect accuracy is not essential but researchers
wish to acquire an approximate estimate in a short time, this could provide for a quick and simple
method of doing so. The relationship between the number of included items and accuracy appeared
to be nonlinear, with the implication that a substantial number of items (approx. 50%) can be dropped
from the measure while retaining high predictive accuracy (R2 of 0.95 or higher). Furthermore, while
performance improved somewhat with larger training samples, we were able to train highly accurate
models even with relatively small samples of around 50 participants. The sample size required for
other use cases will depend on the psychometric properties of the measure being used, however.
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Figure 4. Item reduction using FACSIMILE for factor scores derived from exploratory factor analysis. (a) Relationship between the
number of included items and accuracy in predicting observed factor scores, as quantified by the R” score. Here, the number of
items refers to the final number of items that are used for predicting both subscales. As in figure 2, the results represent different
potential combinations for each number of included items depending on the combination of & values used (b) Scatter plots showing
observed versus predicted sum scores for each participant in the test dataset. The top row shows the results using a variant with 6
items included, with the cognitive factor on the left and the somatic factor on the right. The bottom row shows a variant with 12 items
included with the cognitive and somatic factors on the left and right, respectively. Again, predictions are derived from a final model
and item set that is used to predict both dimensions. Note that predictive accuracy may differ from (a) to (b) since these are derived
from different datasets: the validation and test dataset, respectively.

For example, scales that are designed to produce very skewed responses when used in unselected
populations (as is the case with screening measures that aim to distinguish between cases and controls)
may pose a greater challenge.

While we have demonstrated the most likely uses of this method, it is highly flexible and may
be of use in other situations. For example, we might imagine a situation where we have scores on
multiple factors derived from exploratory factor analysis, but only wish to predict one score in a
new study; a shortened measure could be developed to predict just this single factor. Alternatively,
we may have factor solutions of varying complexity [24] and wish to predict scores on each of the
factors simultaneously with a shortened measure. Furthermore, the inclusion of items is flexible. As an
example, we may have an established set of factors derived from 10 questionnaire measures combined,
and wish to estimate scores on these factors in a dataset where we have data for only five of these
measures. Using the original dataset, we can simply train a model to predict the observed factor scores
that only include items from these five measures, and then apply it in our new dataset.

A question we have not addressed here is the extent to which these reduced scales are able to
predict external measures of interest (such as other questionnaire measures or aspects of behaviour);
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i.e. do predicted scores represent the same construct as the observed scores in terms of their exter-
nal validity. However, we and others have successfully used earlier versions of this methodology
to successfully relate shortened measures of mental health symptoms to behaviour across multiple
studies [19,25-27], suggesting that the predicted scores do not differ in their relationships with external
variables compared with the observed scores. More generally, while we have not tested this here,
many psychometric properties of the predicted scores (e.g. test-retest reliability) should be similar
to observed scores so long as the model is accurate. Future work should seek to confirm this, and
verify that psychometric properties derived from short scales are consistent with those of the full scale.
Finally, these predicted scores will inevitably be subject to limitations of scores derived from the full
scale and will still represent indirect and somewhat noisy measures of a true underlying psychological
construct.

It is important to note that our approach does have limitations and will not be viable in every
setting. Predictive accuracy will depend on the number of included items and will never be perfect; in
settings where perfect accuracy is essential (e.g. in clinical settings), this may not be acceptable. The
method also relies on a weighted combination of items, in comparison to typical shortened measures
for which sum scores can be calculated straightforwardly by summing responses. This makes the
calculation of scores marginally more complex, although this is far from prohibitive and enables
greater accuracy and brevity. Our method also does not provide the deeper insights into the nuances
of a self-report measure that approaches such as item response theory can bring. Rather, it is a simple
and effective, but blunt, tool that aims to estimate scores without any deeper understanding of how the
measure is constructed. Finally, any approximate scores derived through our approach will only be as
valid as the true scores derived from the full scale; an accurate prediction of scores on an invalid or
unreliable measure will have lesser utility than those from a robust and well-validated measure.
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